Boxicity of line graphs
نویسندگان
چکیده
Boxicity of a graph H , denoted by box(H), is the minimum integer k such that H is an intersection graph of axis-parallel kdimensional boxes in R. In this paper, we show that for a line graph G of a multigraph, box(G) ≤ 2∆(⌈log 2 log 2 ∆⌉ + 3) + 1, where ∆ denotes the maximum degree of G. Since ∆ ≤ 2(χ−1), for any line graph G with chromatic number χ, box(G) = O(χ log 2 log 2 (χ)). For the d-dimensional hypercube Hd, we prove that box(Hd) ≥ 1 2 (⌈log 2 log 2 d⌉+ 1). The question of finding a non-trivial lower bound for box(Hd) was left open by Chandran and Sivadasan in [L. Sunil Chandran and Naveen Sivadasan. The cubicity of Hypercube Graphs. Discrete Mathematics, 308(23):57955800, 2008]. The above results are consequences of bounds that we obtain for the boxicity of fully subdivided graphs (a graph which can be obtained by subdividing every edge of a graph exactly once).
منابع مشابه
Boxicity and topological invariants
The boxicity of a graph G = (V,E) is the smallest integer k for which there exist k interval graphs Gi = (V,Ei), 1 ≤ i ≤ k, such that E = E1 ∩ · · · ∩ Ek. Equivalently, the boxicity of G is the smallest integer d ≥ 1 such that G is the intersection graph of a collection of boxes in R (a box in R the cartesian product of d closed intervals of the real line). In the first part of the talk, I will...
متن کاملGeometric Representation of Graphs in Low Dimension
An axis-parallel k–dimensional box is a Cartesian product R1 × R2 × · · · × Rk where Ri (for 1 ≤ i ≤ k) is a closed interval of the form [ai, bi] on the real line. For a graph G, its boxicity box(G) is the minimum dimension k, such that G is representable as the intersection graph of (axis–parallel) boxes in k–dimensional space. The concept of boxicity finds applications in various areas such a...
متن کاملBoxicity and maximum degree
An axis-parallel d–dimensional box is a Cartesian product R1 × R2 × · · · × Rd where Ri (for 1 ≤ i ≤ d) is a closed interval of the form [ai, bi] on the real line. For a graph G, its boxicity box(G) is the minimum dimension d, such that G is representable as the intersection graph of (axis–parallel) boxes in d–dimensional space. The concept of boxicity finds applications in various areas such a...
متن کاملLower bounds for boxicity
An axis-parallel b-dimensional box is a Cartesian product R1×R2×· · ·×Rb where Ri is a closed interval of the form [ai, bi] on the real line. For a graph G, its boxicity box(G) is the minimum dimension b, such that G is representable as the intersection graph of boxes in b-dimensional space. Although boxicity was introduced in 1969 and studied extensively, there are no significant results on lo...
متن کاملBoxicity and treewidth
An axis-parallel b–dimensional box is a Cartesian product R1 ×R2 ×· · ·×Rb where Ri (for 1 ≤ i ≤ b) is a closed interval of the form [ai, bi] on the real line. For a graph G, its boxicity box(G) is the minimum dimension b, such that G is representable as the intersection graph of (axis–parallel) boxes in b–dimensional space. The concept of boxicity finds applications in various areas such as ec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 311 شماره
صفحات -
تاریخ انتشار 2011